Facile 1,3- and 1,5-Chlorine Migration

Rainer Koch, Ming Wah Wong,* and Curt Wentrup*

Department of Chemistry, The University of Queensland, Brisbane, Queensland 4072, Australia

Received February 20, 1996[®]

High-level ab initio molecular orbital calculations, using the G2(MP2,SVP) theory (and semiempirical methods) have been used to examine several 1,3- and 1,5-chlorine migrations. It is found that the interaction of chlorine lone pair electrons with a low-lying LUMO accelerates the Cl shift dramatically (lone pair–LUMO-mediated pericyclic reaction). The activation barriers for the 1,3-migration in chloro oxo ketene **1** (Cl(C=O)CH=C=O) and the 1,5-migration in (2-(chlorocarbonyl)-vinyl)ketene **2** (Cl(C=O)CH=CHCH=C=O) are only 53 and 61 kJ mol⁻¹, respectively, compared to the 216 and 173 kJ mol⁻¹ barriers for the corresponding unassisted 1,3- and 1,5-sigmatropic shifts of Cl in 3-chloro-1-propene and 5-chloro-1,3-pentadiene. The transition structures for **1** and **2** reveal that migration of the chlorine atoms takes place in the molecular planes. The 1,5-chlorine shift in 6-chlorocyclohexa-2,4-dienone (**3**) has a significantly higher barrier due to a lack of appropriate orbital interaction. The related 1,3-shift in the (chlorocarbonyl)imine– α -chloro isocyanate system is also dramatically accelerated compared with conventional pericyclic 1,3-Cl migration.

Introduction

Interest in the study of concerted processes in organic chemistry has increased markedly since the development of the general theory of orbital symmetry by Woodward and Hoffmann.¹ Thermal and photochemical [1,n] sigmatropic rearrangement is one of the more fascinating of these processes, and it has been the subject of several reviews.² Not only carbon and hydrogen migrations, but also shifts of other functionalities including halogen atoms have been documented.³

Although numerous examples of experimental and some semiempirical studies on the migrations of chlorine,⁴ bromine,⁵ and iodine⁶ appeared in the literature, to date there has been a lack of high-level ab initio investigation. In particular, the 1,5-sigmatropic rearrangement of chlorine is a well-explored reaction. Both NMR and semiempirically determined energy barriers have been reported, lying between 110 and 140 kJ mol^{-1.4b-d}

Further motivation for the current paper resulted from ongoing studies of the thermal oxoketene–oxoketene rearrangement, which involves a 1,3-shift (eq 1).⁷ Both experimental⁸ and theoretical⁹ investigations have shown

(3) Spangler, C. W. Chem. Rev. 1976, 76, 187.

(6) Breslow, R.; Canary, J. W. J. Am. Chem. Soc. 1991, 113, 3950.

that the rate of the 1,3-migration is strongly dependent on the nature of the substituent R.

In particular, the electron-rich *n*-donating methylthio and dimethylamino groups are found to dramatically accelerate this rearrangement. The stabilizing effect of the electron-rich substituents was rationalized in terms of the favorable donor-acceptor interaction between the group R and the vacant central carbon p orbital of the ketene LUMO in the molecular plane (Figure 1). Since halogens possess unshared pairs of electrons, 1,3-halogen migrations in α -oxo ketenes are also expected to be favorable processes (eq 1, R = Cl). One may further extend this idea of donor-acceptor interaction to the vinylogous 1,5 shift depicted in eq 2.

We have examined the 1,3- and 1,5-shifts of Cl (eqs 1 and 2; R = Cl) by high-level ab initio and semiempirical calculations. In addition, the out-of-plane 1,5-Cl migration in chlorocyclohexadienones^{4b} (eq 4) and the 1,3-Cl migration in chloromethyl isocyanate¹⁰ (eq 5) are studied.

S0022-3263(96)00348-9 CCC: \$12.00 © 1996 American Chemical Society

[®] Abstract published in *Advance ACS Abstracts,* September 1, 1996. (1) Woodward, R. B.; Hoffmann, R. *The Conservation of Orbital Symmetry:* Verlag Chemie GmbH/Academic Press: Weinheim/Bergstr., 1970; and references cited therein.

^{(2) (}a) Hoffmann, R.; Woodward, R. B. Acc. Chem Res. 1968, 1, 17.
(b) Frey, H. M.; Walsh, R. Chem. Rev. 1969, 69, 103. (c) Gilchrist, T. L.; Storr, R. C. Organic Reactions and Orbital Symmetry; Cambridge University Press: New York, 1972.

^{(4) (}a) Hartshorn, M. P.; Judd, M. C.; Robinson, W. T. Aust. J. Chem. **1986**, 39, 2121. (b) Hartshorn, M. P.; Hayman, K. A.; Martyn, R. J.; Robinson, W. T.; Vaughan, J.; Wells, B. A.; Wright, G. J. Aust. J. Chem. **1990**, 43, 1729. (c) Popkova, V. Y; Anisimv, V. M.; Dolenko, G. N.; Semenenko, M. N.; Fedoseev, V. M. J. Chem. Soc., Perkin Trans. 2 **1995**, 1375. (d) Mikhailov, I. E.; Dushenko, G. A.; Kisin, A. V.; Mügge, C.; Zschunke, A.; Minkin, V. I. Mendeleev Commun. **1994**, 85.

^{(5) (}a) Mikhailov, I. E.; Minkin, V. I.; Dushenko, G. A.; Klenkin, A.
(5) (a) Mikhailov, I. E.; Minkin, V. I.; Dushenko, G. A.; Klenkin, A.
(b) Kinkin, V. I.; Mikhailov, I. E.; Dushenko, G. A.; Yudilevich, J. A.; Minyaev, R. M.; Zschunke, A.; Mügge, K. J. Phys. Org. Chem.
1991, 4, 31.

^{(7) (}a) Wentrup, C.; Netsch, K.-P. *Angew. Chem., Int. Ed. Engl.* **1984**, *23*, 802. (b) Wentrup, C.; Winter, H.-W.; Gross, G.; Netsch, K.-P.; Kollenz, G.; Ott, W.; Biedermann, G. *Angew. Chem., Int. Ed. Engl.* **1984**, *23*, 800.

^{(8) (}a) Ben Cheikh, A.; Chuche, J.; Manisse, N.; Pommelet, J. C.; Netsch, K.-P.; Lorencak, P.; Wentrup, C. J. Org. Chem. 1991, 56, 970.
(b) Kappe, C. O.; Kollenz, G.; Leung-Toung, R.; Wentrup, C. J. Chem. Soc., Chem. Commun. 1992, 487. (c) Fulloon, B. E.; Wentrup, C. J. Org. Chem. 1996, 61, 1363.
(9) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. Chem. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. Org. (P) (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. J. O'Ferrall, R. A. J.

⁽⁹⁾ (a) Nguyen, M. T.; Ha, T.-K.; More O'Ferrall, R. A. *J. Org. Chem* **1990**, *55*, 3251. (b) Wong, M. W.; Wentrup, C. *J. Org. Chem.* **1994**, *59*, 5279.

Figure 1. Lone pair–LUMO interaction involved in the 1,3-R shift of α -oxoketenes (eq 1).

The reactions are compared with the conventional pericyclic 1,3- and 1,5-shifts of Cl in 3-chloropropene and 5-chloro-1,3-pentadiene.

Computational Methods

Standard ab initio molecular orbital calculations¹¹ were carried out with the GAUSSIAN 94 system of programs.¹² The structures and energies of compounds 1-3 and related structures were examined at the G2(MP2,SVP) level of theory.¹³ This corresponds effectively to QCISD(T)/6-311+G(3df,2p)// MP2/6-31G* energies together with zero-point vibrational and isogyric corrections. In the G2(MP2,SVP) theory, the basisset extension energy contribution is calculated at the MP2 level and the QCISD(T) energy is evaluated using the 6-31G* basis set. It has been shown that the accuracy of the G2(MP2, SVP) method is comparable to that of the G2(MP2)¹⁴ theory but computationally more efficient.¹³ The frozen-core approximation was employed for all correlated calculations. Semiempirical calculations at the $AM1^{15}$ and $PM3^{16}$ levels were performed using MOPAC 6/PC.¹⁷ Calculated geometries and absolute and relative energies are summarized in Tables 1 and 2.

Discussion

1,3-Shift. In general, α -oxo ketenes can exist as a mixture of two conformers: *s*-*trans* (**1a**) and *s*-*cis* (**1b**). Our calculations reveal a slight preference for the *s*-*trans* isomer **1a** by 4.2 kJ mol⁻¹.¹⁸

The transition state for the 1,3-Cl migration $1a \rightleftharpoons 1a'$ (**TS1**, Figure 2) is predicted to lie 53 kJ mol⁻¹ above the *s*-trans oxoketene. This calculated barrier is significantly

94, Gaussian Inc., Pittsburgh, PA, 1995.
(13) (a) Smith, B. J.; Radom, L. J. Phys. Chem. 1995, 99, 6468. (b) Curtiss, L. A.; Redfern, P. C.; Smith, B. J.; Radom, L. J. Phys. Chem. Submitted.

(14) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1993, 98, 1293.

(15) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899.

(16) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209.
 (17) Koch, R.: Wiedel, B. QCPE Bul. 1992, 4 (QCMP 113), 12.

(18) We define *s*-trans and *s*-cis of 1 to be consistent with the nomenclature of other α -oxo ketenes, vinylketenes, and acylallenes; cf. ref 9b and: Bibas, H.; Wong, M. W.; Wentrup, C. J. Am. Chem. Soc. **1995**, *117*, 9582.

Table 1	. (Calculated (MP2/6-31G*) Stru	uctural Parameters					
for Equilibrium and Transition Structures ^a								

parameter	TS1	1a (s-trans)	1b (<i>s-cis</i>)							
C1-Cl	2.207	2.904	3.937							
C3–Cl	2.207	1.813	1.791							
C1=0	1.177	1.169	1.169							
C3=0	1.177	1.205	1.210							
C1-C2	1.383	1.339	1.339							
C2-C3	1.383	1.445	1.449							
O=C1-C2	149.4	178.2	180.0							
O=C3-C2	149.4	126.3	127.3							
C2–C3–Cl	92.6	113.1	111.5							
Cl-C3-C2-C1	0	0	180							
$0 = C_3 - C_2 - C_1$	180	180	0							
parameter	TS3	2a	2b							
C1–Cl	2.123	2.825	4.713							
C5–Cl	2.123	1.810	1.779							
C1=0	1.185	1.173	1.172							
C1-C2	1.393	1.342	1.358							
C2-C3	1.390	1.437	1.420							
C3–C4	1.390	1.363	1.369							
C4–C5	1.393	1.451	1.428							
O=C1-C2	142.0	169.3	162.3							
O = C5 - C4	142.0	125.4	125.4							
Cl-C5-C4	106.5	115.7	115.3							
Cl-C5=0	111.5	118.9	119.4							
Cl-C5-C4-C3	0	0	180							
O = C1 - C2 - C3	180	180	180							
0 = C5 - C4 - C3	180	180	0							
parameter		3a								
C1–Cl	2.483		2.685							
C2-Cl	2.467		1.812							
C1=0	1.230		1.231							
C1-C2	1	1.482	1.531							
C2-C3	1.390		1.467							
C3-C4	1.400		1.355							
C4-C5	1	1.400	1.459							
C5-C6	1	1.390	1.349							
C6-C1	1	1.482	1.491							
C2-C1-C6	1	111.0	117.1							
C1-C2-C3	1	118.2	115.1							
0 = C1 - C2 - C3	-	-140.6	-157.8							
Cl-C1-C2-C3	1	100.3	120.6							

^a Bond lengths in Å and bond angles in deg.

less than that for the 1,3-H shift in formylketene (144 kJ mol⁻¹) but comparable to those for the amino (71 kJ mol⁻¹) and thio (47 kJ mol⁻¹) substituents.^{9b} Therefore, chlorine is also an excellent migrating group. This is readily explained in terms of the lone pair–LUMO interaction shown in Figure 1. Thus, we predict 1,3-Cl migration in α -oxo ketenes to be an observable process. We are currently investigating the scope of such rearrangements experimentally.

In contrast to the very facile Cl migration in α -oxo ketenes, the calculation of the activation energy for the corresponding 1,3-Cl shift in 3-chloro-1-propene reveals a barrier of 216 kJ mol⁻¹ and an out-of-plane transition state (**TS2**, Figure 2), thereby demonstrating the importance of the above-mentioned ketene orbitals.

1,5-Shift. In order to compare the 1,3-Cl shift in α -oxo ketene with a possible 1,5-shift, we have chosen the vinylogous (2-(chlorocarbonyl)vinyl)ketene (2), which should give a planar six-membered transition state for the 1,5-Cl migration. However, the additional ethenyl group leads to an increased number of conformers. We have considered all possible conformers of 2 with respect to single and double bond isomerizations, resulting in a total of eight conformers.

2b is calculated to be the most stable conformer. **2e**– **2h** lie within 4 kJ mol⁻¹ of **2b**, while **2c** and **2d** are about

^{(10) (}a) Samarai, L. J.; Gorbatenko, V. I.; Boldeskul, I. E.; Luk'yanchuk, V. P. *Zh. Org. Khim.* **1976**, *12*, 547. (b) König, K.-H.; Feuerherd, K.-H.; Schwendemann, V. M.; Oeser, H.-G. *Angew. Chem., Int. Ed. Engl.* **1981**, *20*, 883.

⁽¹¹⁾ Hehre, W. J; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986.
(12) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;

⁽¹²⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J., Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian* 94; Gaussian Inc., Pittsburgh, PA, 1995.

 Table 2.
 Calculated Total and Relative Energies

	absolute	energies	relative energies			
species	G2 (MP2, SVP) (hartrees)	AM1 (kJ mol ⁻¹)	PM3 (kJ mol ⁻¹)	G2 (MP2, SVP) (kJ mol ⁻¹)	AM1 (kJ mol ⁻¹)	PM3 (kJ mol ⁻¹)
la 1b TS1 2a 2b 2c 2d 2e 2f 2f 2g	$\begin{array}{r} -724.702\ 34\\ -724.700\ 74\\ -724.682\ 28\\ -801.937\ 22\\ -801.948\ 22\\ -801.944\ 65\\ -801.944\ 54\\ -801.946\ 72\\ -801.947\ 67\\ -801.947\ 67\\ -801.947\ 05\\ \end{array}$	$\begin{array}{r} -200.4\\ -201.8\\ -112.1\\ -118.4\\ -142.3\\ -140.0\\ -143.8\\ -127.2\\ -141.8\\ -139.8\end{array}$	$\begin{array}{c} -226.6\\ -233.6\\ -175.6\\ -131.9\\ -153.2\\ -162.5\\ -164.8\\ -132.0\\ -158.6\\ -162.9\end{array}$	$\begin{array}{c} 0.0\\ 4.2\\ 52.7\\ 28.9\\ 0.0\\ 9.4\\ 9.6\\ 3.9\\ 1.4\\ 3.1\end{array}$	$\begin{array}{c} 0.0\\ -1.3\\ 88.3\\ 23.9\\ 0.0\\ 2.3\\ -1.5\\ 15.1\\ 0.5\\ 2.5\\ \end{array}$	$\begin{array}{c} 1.0\\ -7.0\\ 51.0\\ 21.3\\ 0.0\\ -9.3\\ -11.6\\ 21.2\\ -5.4\\ -9.7\end{array}$
2h TS3 3a TS5 4a 4b TS6	$\begin{array}{r} -801.946\ 87\\ -801.924\ 90\\ -766.032\ 65\\ -765.986\ 73\\ -666.790\ 77\\ -666.807\ 25\\ -666.740\ 15\end{array}$	$-143.6 \\ -69.4 \\ -44.7 \\ 145.4 \\ -57.3 \\ -80.8 \\ 104.4$	$\begin{array}{r} -165.3 \\ -109.9 \\ -47.3 \\ 108.1 \\ -86.2 \\ -89.1 \\ 51.5 \end{array}$	$\begin{array}{c} 3.5\\ 61.2\\ 0.0\\ 120.6\\ 0.0\\ -43.3\\ 132.9\end{array}$	$\begin{array}{c} -1.3 \\ -2.9 \\ 0.0 \\ 190.1 \\ 0.0 \\ -23.5 \\ 161.7 \end{array}$	$\begin{array}{c} -12.1 \\ 43.3 \\ 0.0 \\ 155.4 \\ 0.0 \\ -2.9 \\ 137.7 \end{array}$

10 kJ mol⁻¹ higher in energy (Table 2). Structure 2a, preorientated for the 1,5-chlorine shift, is found to be 29 kJ mol⁻¹ higher in energy.

The 1,5-Cl migration in **2a**, which is orientated favorably for the 1,5-shift, is predicted to have an activation barrier of 32 kJ mol⁻¹, via the planar six-membered ring transition structure **TS3** (Figure 3). The overall activation barrier for conformer **2b**, the most stable conformer, is therefore 61 kJ mol⁻¹. Hence, 1,5-Cl migration in **2** is predicted to be even more facile but comparable with the 1,3-shift. The small computed barrier confirms our hypothesis that the donor-acceptor interaction between the lone pair electrons of chlorine and the vacant carbon p orbital of the ketene LUMO is the key factor in stabilizing the transition state for 1,5-migration in **2**.

As for the 1,3-shift, we also calculated the barrier for the conventional pericyclic 1,5-Cl migration in 5-chloro-

1,3-pentadiene (**TS4**, Figure 3). This kind of reaction requires the movement of the chlorine atom above the molecular plane as there is no additional stabilizing effect from the orthogonal orbitals of a ketene function. The transition state (Figure 3) lies 173 kJ mol⁻¹ above the equilibrium structure.

To explain the facile 1,3- and 1,5-shifts, let us consider the orbital interactions involved. For concerted 1,3-H migration in allylic systems there exists only the antarafacial pathway, which results in high steric strain and poor orbital overlap and is hence almost unknown.¹⁹ Chart 1 depicts the orbitals involved in the normal 1,3and 1,5-pericyclic rearrangements.

However, if the migrating atom is capable of undergoing inversion^{1,20} or if interaction with additional (orthogonal) orbitals is possible, as in the case of ketenes and other cumulenes, then the migration can also proceed via a suprafacial pathway.^{7a} Thus, for migrating groups other than hydrogen, 1,3-rearrangements become feasible, as demonstrated in Chart 2: interaction of the filled lone pair orbital of the migrating atom with the vacant central carbon p orbital of the ketene LUMO (which is perpendicular to the normal π system).

In contrast to the clearly pericyclic chlorine rearrangements in 3-chloro-1-propene and 5-chloro-1,3-pentadiene, where the chlorine migrates above the molecular planes, one can describe the in-plane 1,*n*-shifts involving ketene functions as pseudopericyclic, as there is "a disconnection (or orthogonality^{7a}) in the cyclic array of overlapping orbitals".²¹ However, the chlorine migration in ketenes may be conveniently described as a "lone pair–LUMOmediated pericyclic reaction". Note that these reactions are not subject to the normal rules¹ of orbital symmetry.

The donor-acceptor interaction in **TS3** is facilitated by the fact that both the donor and acceptor orbitals lie in the molecular plane. Thus, one would anticipate a higher barrier for systems that prohibit such a favorable orbital overlap. This is readily illustrated by the 1,5- Cl shift in 6-chlorocyclohexa-2,4-dienone (**3**, eq 4).

Hartshorn et al. have examined an analogous system

3a'

3a

Figure 2. TS1 for $1a \rightleftharpoons 1a'$ (eq 3) and **TS2** for the 1,3-Cl migration in 3-chloro-1-propene.

Figure 3. TS3 for 1,5-Cl shift in (2-(chlorocarbonyl)vinyl)ketene and TS4 for 1,5-Cl shift in 5-chloro-1,3-pentadiene.

Chart 2. Orbital Interactions for Lone Pair-LUMO-Mediated Pericyclic 1,3- and 1,5-Shifts.

with semiempirical methods.^{4b} They reported a PM3calculated barrier of 139 kJ mol⁻¹ for the rearrangement of 4,6-dichloro-2,5,6-trimethylcyclohexa-2,4-dienone to 4,6-dichloro-2,3,6-trimethylcyclohexa-2,4-dienone. We calculate 1,5-Cl migration in **3** to have a moderate barrier of 121 kJ mol⁻¹, via transition structure **TS5** (Figure 4), which is analogous to **TS4**.

Chlorocarbonylimine $-\alpha$ -**Chloroisocyanate Interconversion.** It is known that the 1,3-Cl migration in carbamoyl chlorides of type **4a** to give α -chloro isocyanates (eq 5) is a facile process.²² In agreement with these experimental findings, our calculations of the chlorotropic equilibrium (eq 5, R = H) favor the α -chloro isocyanate form **4b** by 48 kJ mol⁻¹.

Figure 4. TS5 for 1,5-Cl shift in 6-chlorocyclohexa-2,4-dienone.

The barrier for the tranformation of **4a** to **4b** via **TS6** is predicted to be 133 kJ mol⁻¹ at the G2(MP2,SVP) level of theory. Again, **TS6** turns out to be almost planar (28°, Figure 5), thus indicating another example of a lone pair–LUMO-mediated pericyclic reaction.

Semiempirical Calculations. Both semiempirical methods predict the *s*-*cis* isomer of α -oxo ketene **1** to be more stable, in contrast to the ab initio results. PM3 favors **1b** by 7 kJ mol⁻¹, AM1 only by little more than 1 kJ mol⁻¹. AM1 clearly overestimates the activation barrier associated with the 1,3-rearrangement (88 kJ mol⁻¹). PM3, however, predicts the transition state **TS1**

^{(19) (}a) Jensen, F. J. Am. Chem. Soc. 1995, 117, 7487 and references cited therein. (b) Meier, H.; Schmitt, M. Tetrahedron Lett. 1989, 5873. (20) (a) Berson, J. A.; Nelson, G. L. J. Am. Chem. Soc. 1967, 89, 5303. (b) Carpenter, B. K. J. Am. Chem. Soc. 1995, 117, 6336. (21) (a) Ross, J. A.; Seiders, R. P.; Lemal, D. M. J. Am. Chem. Soc.

^{(21) (}a) Ross, J. A.; Seiders, R. P.; Lemal, D. M. J. Am. Chem. Soc. **1976**, 98, 4325. (b) Birney, D. M.; Wagenseller, P. E. J. Am. Chem. Soc. **1994**, 116, 6262.

^{(22) (}a) Samarai, L. J.; Gorbatenko, V. I.; Boldeskul, I. E.; Luk'yanchuk, V. P. *Zh. Org. Khim.* **1976**, *12*, 547. (b) König, K.-H.; Feuerherd, K.-H.; Schwendemann, V. M.; Oeser, H.-G. *Angew. Chem., Int. Ed. Engl.* **1981**, *20*, 883.

TS6

Figure 5. TS6 for the chlorotropic equilibrium $4a \rightleftharpoons 4b$.

to be 51 kJ mol⁻¹ above the *s*-trans oxo ketene in very good agreement with the G2(MP2,SVP) result.

Conformer **2a** is calculated to be the least stable isomer using both semiempirical models. However, AM1 gives a better description of the energetic distribution of the remaining seven isomers than does PM3. Again, the AM1-predicted activation barrier is too high, whereas PM3 tends to slightly underestimate the energy of the transition state.

The activation energy for isomerization of **3a** is determined to be 155 (PM3) or 190 kJ mol⁻¹ (AM1), again showing a better agreement with the ab initio results for PM3.

The same is true for the chlorotropic equilibrium $4a \Rightarrow 4b$. PM3 reproduces the ab initio calculated barrier

very well (138 kJ mol⁻¹), while AM1 is again too high (162 kJ mol⁻¹).

In general, PM3 seems to be the more reliable semiempirical method for the prediction of activation barriers in the examples presented here.

Conclusions

The 1,3-Cl shifts in α -oxo ketenes (eqs 1 and 3), the vinylogous 1,5-Cl shifts in (2-(chlorocarbonyl)vinyl)ketene (eq 2) and the 1,3-Cl shift interconverting (chlorocarbonyl)imine and chloromethyl isocyanates (eq 5) are dramatically accelerated in comparison with conventional pericyclic 1,3- and 1,5-shifts of Cl. These facile chlorine shifts are mediated by a favorable in-plane interaction between a filled chlorine lone pair orbital and a vacant carbon p orbital on the ketene or isocyanate moiety. It may be expected that this principle of lone pair–LUMO-mediated pericyclic reaction applies also to the migration of other halogens (particularly Br) and other cumulenes.

Acknowledgment. We thank the Australian Research Council for financial support and for a research fellowship for M.W.W., the Deutsche Forschungsgemeinschaft for a research fellowship for R.K., and the University of Queensland for generous allocation of computer time.

JO9603486